SUGAR
The Kiss of Death
by Brian Clement, PhD, NMD, LN
www.HippocratesInstitute.org
Sugar is notorious for promoting weight gain, tooth decay, etc., yet there is a much more sinister role that it plays in sparking and enhancing every disease known to man.
The Fanjul brothers are among the largest sugar producers in the world, and control the sugar industry in the USA. They own about 12% of all land in Palm Beach County, Florida.

They give large donations to all politicians so they can manipulate law. They were behind preventing the use of stevia, which is a viable health-supporting sugar alternative.
Fruit and Sugar

Hybridized fruit of today has on average 30 times more than its ancestral origin.

Human pancreases have been so taxed over the last several generations due to the consumption of processed sugars, they have actually gone on strike whereas enabling sugar to go directly into the bloodstream, promoting disease.
In the 19th century, only the aristocracy consumed processed sugar.

It is estimated that these individuals consumed no more than a kilo (2.2 lbs.) of sugar per year.

Ironically, today’s sugar subsidies have the poorest members of society consuming the largest amount of sugar.

Meanwhile, society’s most affluent relish the privilege to make intelligent choices.
Our children, on average, consume **double their weight** in sugar per year.
Simple Sugars

Sucrose, glucose and fructose are important carbohydrates, commonly referred to as simple sugars. Sugar is found naturally in whole foods and is often added to processed foods to sweeten them and increase flavor. Your tongue can't quite distinguish between these sugars, but your body can tell the difference. They all provide the same amount of energy per gram, but are processed and used differently throughout the body.

Structure

Simple carbohydrates are classified as either monosaccharides or disaccharides. Monosaccharides are the simplest, most basic units of carbohydrates and are made up of only one sugar unit. Glucose and fructose are monosaccharides and are the building blocks of sucrose, a disaccharide. Thus, disaccharides are just a pair of linked sugar molecules. They are formed when two monosaccharides are joined together and a molecule of water is removed—a dehydration reaction.
Glucose

The most important monosaccharide is glucose, the body’s preferred energy source. Glucose is also called blood sugar, as it circulates in the blood, and relies on the enzymes glucokinase or hexokinase to initiate metabolism. Your body processes most carbohydrates you consume, which then manifests glucose. This is used immediately for energy or to be stored in muscle cells or the liver as glycogen for later use. Unlike fructose, insulin is secreted primarily in response to elevated blood concentrations of glucose, and insulin facilitates the entry of glucose into cells.
Fructose is a sugar found naturally in many fruits and vegetables, and added to various beverages such as soda and fruit-flavored drinks. However, it is very different from other sugars because it has a different metabolic pathway and is not the preferred energy source for muscles or the brain. Fructose is only metabolized in the liver and relies on fructokinase to initiate metabolism. It is also more lipogenic, or fat-producing, than glucose. Unlike glucose, too, it does not cause insulin to be released or stimulate production of leptin, a key hormone for regulating energy intake and expenditure. These factors raise concerns about chronically high intakes of dietary fructose, because it appears to behave more like fat in the body than like other carbohydrates. Volumes of scientific data show that fructose precipitates disease and premature aging more than any other source of sugar.
Sucrose

Sucrose is commonly known as table sugar, and is obtained from sugar cane or sugar beets. Fruits and vegetables also naturally contain sucrose. When sucrose is consumed, the enzyme beta-fructosidase separates sucrose into its individual sugar units of glucose and fructose. Both sugars are then taken up by their specific transport mechanisms. The body responds to the glucose content of the meal in its usual manner; however, fructose uptake occurs at the same time. The body will use glucose as its main energy source and the excess energy from fructose, if not needed, will be poured into fat synthesis, which is stimulated by the insulin released in response to glucose.
Notorious Sugars

White Sugar, aka sucrose (50% fructose, 50% glucose)

Brown Sugar (refined white sugar with some molasses added back to it)

Dextrose (sucrose made from starch)

High Fructose Corn Syrup (55% fructose, 42% glucose for soft drinks)

Agave Syrup (55 to 90% fructose)

Maple Syrup (60% sucrose)

Xylitol (derived from various fruits and plants)

Honey (30% sucrose, 40% fructose)

Brown Rice Syrup (45% maltose, 3% glucose, and 52% maltotriose)

Date Sugar (ground up dried dates, high fructose content)

Coconut Sugar (70–79% sucrose, 3–9% each glucose and fructose)

DISEASE CAUSING SUBSTANCES
Artificial Sweeteners

Top 4 Most Dangerous Artificial Sweeteners:
1. Aspartame
2. Acesulfame-K
3. Sucralose
4. Saccharin
Artificial Sweeteners

1. Aspartame

What’s in it: Phenylalanine, aspartic acid and methanol.

Reported side effects: Headaches, fibromyalgia, anxiety, memory loss, arthritis, abdominal pain, nausea, depression, heart palpitations, irritable bowel syndrome, seizures, neurological disorders, vision problems, brain tumors and weight gain.

Concerns: Phenylalanine and aspartic acid directly impact brain and central nervous system functions; evidence shows they play a role in mood disorders, memory problems and other neurological illnesses.

Methanol is converted into formaldehyde when metabolized. Makers of aspartame say methanol and its byproducts are quickly excreted. Numerous research studies working with thousands of people have exposed measurable amounts of formaldehyde in the livers, kidneys and brains of test subjects after ingestion of aspartame.

At high temperatures, phenylalanine breaks down into DPK, a known carcinogen. Phenylalanine is especially dangerous for people with the hereditary disease, phenylketonuria.
Artificial Sweeteners

2. Acesulfame-K

What's in it: Acesulfame-K (A-K) is a potassium salt containing methylene chloride, a known carcinogen.

Reported side effects: Long term exposure to methylene chloride can cause nausea, headaches, mood problems, impairment of the liver and kidneys, problems with eyesight and ultimately cancer. Acesulfame-K is linked to blood sugar disorders.

Concerns: Of all artificial sweeteners, A-K has undergone the least scientific scrutiny. Early studies showed a potential link between the sweetener and development of multiple cancers in laboratory animals.
Artificial Sweeteners

3. Sucralose

What's in it: Sucralose is a synthetic additive created by chlorinating sugar. Manufacturers say the chlorine in sucralose is no different from that in table salt.

Fact: The chemical structure of the chlorine in sucralose is almost the same as that in the now-banned pesticide DDT.

Reported side effects: Head and muscle aches, stomach cramps and diarrhea, bladder issues, skin irritation, dizziness and inflammation.

Concerns: Research has shown sucralose can cause shrinking of the thymus gland, an important immune system regulator, and liver and kidney dysfunction. A recent study by Duke University found sucralose reduces healthy intestinal bacteria, which are needed for proper digestion and can impact the effectiveness of prescription and other drugs.
Artificial Sweeteners

4. Saccharin

What's in it: Saccharin is a sulfa-based sweetener; its primary ingredient is benzoic sulfimide.

Reported side effects: For those with sulfa allergies, saccharin may cause nausea, diarrhea, skin problems or other allergy-related symptoms.

Concerns: Early safety studies of saccharin showed the sweetener caused bladder cancer in rats. The FDA recently lifted the requirement that saccharin be labeled as a probable carcinogen on food packaging.

The link between saccharin and bladder cancer has contributed to saccharin being the most investigated of all artificial sweeteners. Saccharin has been scrutinized intensely by the legitimate scientific community since the early 1950s.
A Safe Alternative

Stevia is a natural sweetener derived from *Stevia rebaudiana* (aka sweetleaf plant). It’s 300x as sweet as sugar, so it only takes a small amount to produce the same sweet taste as cane sugar. Stevia has been used as a sweetener in many cultures for centuries. It was brought back to Europe from Ecuador in the mid-19th century, and only recently gained acceptance as a sugar substitute in the United States. It was first introduced in the US in the mid 1990s as an herbal supplement.

The sugar and sugar substitute industries spent millions worldwide on preventing stevia’s entry into the marketplace. They actually resorted to fabricating propaganda claiming this healthy plant caused diseases like cancer. In many countries stevia has been outlawed, and if it were not for the giant soda companies who utilize it as a no calorie additive, it would have been outlawed in North America.

Stevia offers an all-natural alternative to the many sugar substitutes available on the market. Be cautious of stevia with real sugar or other ingredients added.
Sugar and Diabetes

“We’re not diminishing the importance of obesity, but our data suggest that there are additional factors that contribute to diabetes risk besides obesity and total calorie intake, and that sugar appears to play a prominent role.”

—Stanford Prevention Research Center

“Epidemiology cannot directly prove causation, but in medicine, we rely on the postulates of Sir Austin Bradford Hill to examine associations to infer causation, as we did with smoking. You expose the subject to an agent, you get a disease; you take the agent away, the disease gets better; you re-expose and the disease gets worse again. This study satisfies those criteria, and places sugar front and center.”

—Robert Lustig, MD, pediatric endocrinologist at UCSF Benioff Children’s Hospital
Since 1990 the World Health Organization (WHO) has recommended that intake of “free sugars” should be less than 10% of total energy (calorie) intake. Free sugars are sugars that are added to foods by the manufacturer, cook, or consumer; this also includes honey, syrups, fruit juices and fruit concentrates.

Based on new research, health professionals now recommend a stricter approach:

“People now expect to keep their teeth into old age. Given that the negative effects of sugar on our teeth are lifelong, limiting sugar to less than 5% of our calories would minimize the risk of dental cavities throughout life.

—Paula Moynihan, Professor of Nutrition and Oral Health at Newcastle University
Studies have shown that consuming excessive quantities of sugar (processed and refined sugar, such as sucrose and High Fructose Corn Syrup (HFCS)) caused a large urinary calcium excretion increase, both in healthy study subjects and in those who were prone to kidney stones. This is not surprising, since sugar is a highly acidifying food.

Sugar and Cardiovascular Disease

Over the course of the 15-year study, participants who took in 25% or more of their daily calories as sugar were more than twice as likely to die from heart disease as those whose diets included less than 10% added sugar. Overall, the odds of dying from heart disease rose in tandem with the percentage of sugar in the diet—and that was true regardless of a person’s age, sex, physical activity level, and body-mass index (a measure of weight).

Sugar-sweetened beverages such as sodas, energy drinks, and sports drinks are by far the biggest sources of added sugar in the average person’s diet. They account for more than one-third of the added sugar we consume as a people. Other notorious sources include cookies, cakes, pastries, and similar treats; fruit drinks; ice cream, frozen yogurt and the like; candy; and ready-to-eat cereals, organic or not.

—Harvard Medical School
Sugar and Cancer

“Numerous important findings show that cancer cells can readily metabolize fructose to increase proliferation. This has major significance for cancer patients given dietary fructose consumption, which indicates that efforts to reduce refined fructose intake or inhibit fructose-mediating actions will disrupt cancer growth.”

—UCLA Jonsson Comprehensive Cancer Center
Diseases Linked to Sugar Consumption

Each of these maladies have been scientifically proven to be fed by all forms of sugar

ALS
Parkinson’s
MS
Alzheimer’s
HIV
Chronic Fatigue Syndrome
Fibromyalgia
Crohn’s, Diverticulosis, Diverticulitis, Leaky Gut Syndrome
Asthma, OCB (chronic lung disease)
Candida, Fungal, Yeast

Mental Illness, Depression, Schizophrenia, Bipolar Disorder
Dyslexia, ADD, Brain Fog
Infertility, Sterility, Impotency
Acne, Rosacea, Psoriasis, Eczema
Menopause, Andropause
Premature Aging
Youth and Adult Delinquency
Nutrient Deficiencies

www.HippocratesInstitute.org
Proper Fuel

Two moderate green salads will provide enough glucose as a fuel to the cell for a 200-pound (90 kilo) person.